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Abstract

The redistribution of intrinsic quantum noise in the quadratures of the field generated
in a sub-threshold degenerate optical parametric oscillator exhibits interesting dependences
on the individual output mirror transmittances, when they are included exactly. We present
here a physical picture of this problem, based on mirror boundary conditions, which is
valid for arbitrary transmittances and so applies uniformly to all values of the cavity @
factor representing in the opposite extremes perfect oscillator and amplifier configurations.
Beginning with a classical second-harmonic pump, we shall generalize our analysis to apply
to finite amplitude and phase fluctuations of the pump.

1 Introduction

A degenerate optical parametric oscillator (DOPO) has long been considered a nearly ideal squeez-
ing device when operated just below threshold. The quantum fluctuations of the generated
sub-harmonic field are rather immune to spontaneous emission since the two-photon transition
governing the parametric down-conversion process sees no resonant intermediate levels.

Nearly all prior work dealing with this problem [1,2,3] has been limited to the situation in
which the DOPO cavity is nearly perfect. In a general approach [4,5] developed recently by the
author and Abbott, which is based on the exact treatment of mirror boundary conditions, it
has become possible to discuss cavity problems in quantum optics for the entire range of cavity
transmissions possible. In the present DOPO context, this approach thus permits the extreme
limits of a single-pass amplifier (cavity transmission —100%) and of a nearly perfect DOPO cavity
(cavity transmission —0%), and all intermediate-Q oscillator configurations to be treated on the
same footing. By employing this viewpoint (which may be viewed as a generalization of Collett and
Gardiner’s approach [2]), we also develop a physically insightful picture of the general squeezing
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problem, one which emphasizes the correlations of the input, output, and intracavity fields that
govern the relationship of intracavity and output ﬁeld ﬂuctuat;ons Any refermce to modes is
altogether avoided here. —— - -

After treating the DOPO problem with a perfectly monochromatic pump, we shall model real-
istic experiments in which the pump field has finite amplitude and phase fluctuations. Although
any amplitude noise of the pump has a relatively minor impact on the squeezing of the sub-
harmonic signal field, pump phase diffusion even when it is tracked can cause a severe degradation
of that squeezing. More detailed discussions of this problem will appear elsewhere [6].

2 Mathematical Formalism

A description of the problem at hand that covers the whole gamut of cavity transmission factors
is necessarily multimode in character. We avoid all reference to cavity modes by writing the
fully quantized signal field inside the cavity in terms of its rightward (positive—z) and leftward
(negative—z) propagating parts. For the positive-frequency part, this decomposition is written in
the Heisenberg picture (HP) as

EM (z2,1) = (e4(2,8) €™ + e (z,1) e70%) 7™, (1)

in which the operators e4(z,t) have expectation values that are assumed slowly varying in space
and time on the scale of the central wavelength 2x/k, and period 27/{,.

The parametric interaction of E(*)(z,t) with an intense quasimonochromatic is described via
the interaction Hamiltonian (also written in HP) in a cavity of length ¢ filled with the parametric
medium:

¢
Hpopo = Ef. X ;um/ [ei (z,2) + e’_(z,t)] dz + Hermitian Conjugate (2)

The complex pump amplitude egumyp is at most slowly varying in time. The constants A and x?
are the cross-sectional area of the cavity and nonlinear susceptibility, respectively. The notation
used is the same as in Ref. [7]. We may write the equations of propagation for e4 (z t) in the
slowly-varying envelope approximation as

Feeg)uomsptien. @

in which the nonlmear polanza.txon waves pYL(z, t) dnvmg the parametnc interaction are given
by a functional differentiation of the quadratic mteract:on ‘Hamiltonian (2):

Pt (Z,t) = -}A' 6/66* Z,t)) HDOPO (4)
= _3,(° tis ¢
31X Cpump ex(2, )
Thus, on combining (3) and (4), we have the following generahzatxon of the smgle-mode equations
describing the pa.rametnc a.mphﬁcat:on process T -

(562- + ::gl) ex(z,t) = iqe*(z t), (5)
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Fig. 1. The DOPO Cavity with End Mirrors at z=0and z = ¢.

To complete the formalism, we supplement Eq. (5) with boundary connections of the intra-
cavity e4(z,t) fields with the input vacuum fields. These connections are

e.(0,t) = —Fe_(0,t) + fey*(0,1); (6)
e-(L,t) = —Fey(l,t) + Tere(L,1),

in which e}* are the two traveling pieces of the vacuum field entering the cavity through its
mirrors at z = 0 and z = £ with inside-to-outside reflection and transmission coefficients (=, 1)
and (-, ') respectively (see Fig. 1).

3 The Parametric Amplifier Problem

Without the cavity mirrors, the oscillator reduces to the amplifier configuration in which the two
traveling parts e, and e_ are not coupled to each other. We may therefore concentrate on only
one of them, say the e, —field.

Furthermore, for simplicity, we shall assume in this section that the pump has no amplitude
and phase randomness, so that it is strictly monochromatic. For this case, one may assume without
any loss of generality that ¢ is real and positive, for any constant nonzero phase ¢, of ¢ may be
scaled out by redefining e, (z,2) to carry a constant phase factor exp (i¢,/2):

es(2,1) = eqp(z,t) 4473, (7)

without altering the physics.
By adding to Eq. (5) and by subtracting from it its Hermitian conjugate, one obtains the
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following pair of uncoupled equations for the quadratures of e,:

(% + %%) Xi(z,t) = ¢ Xy (2,t); (aiz + %%) Yi(z,t) = —qYi(z,1), (8)

where X, (z,t) = } (e+(z,t) + el(z,t)) Ye(zt) = 4 (e.,.(z, t) - cf,,(z,t)) are the in-phase and
7/2 out-of-phase quadratures. The solution of Eqs. (8) is straightforward in terms of the retarded
time variable, r =t — z/c:

X4(2,t) = X, (0, — z/c) e™; Yy(z,2) = Y, (0,2 — z/c) e, (9)

which represents a phase-sensitive amplification process characteristic of the parametric interac-
tion. These solutions are entirely equivalent to the following time-evolution equations -

Xi(2,) = X, (z - ct,0)e™; Yi(z,t) = Yo(z - ct,0)e. (10)

The linear relationships of Eqs. (9) or (10) indicate that both the expectation value and fluctu-
ations about it of the X, ~quadrature (Y, —quadrature) of the signal field amplify (attenuate) by
the same factor. This statement, valid both classically and quantum-mechanically, clearly implies
that any noise initially present in the signal is stretched along the X-quadrature and shrinks along
the Y-quadrature, as shown in Fig. 2. It is in this way that quadrature squeezing comes about in
a parametric amplifier.

4 The Parametric Oscillator Problem

Our treatment of the parametric oscillator builds upon the simple amplifier analysis presented in
Sec. 3 by limiting z to lie between 0 and ¢ and adding mirrors at z = 0 and at z = £, which serve
to connect ¢, and e. and the input vacuum fields via (6). As in Sec. 3, we restrict our analysis
here to a perfectly monochromatic pump wave for which Eqs. (9) describe the interaction of the
e, wave with the medium. Similar relations may be written down for the quadratures of the e_
-field (integrated backwards from z = ¢):

X_(z,t) = X_(&,t = (£—z)[c)es-3); a1)
Yo(zt) = Y. (41~ (E~z)/c)ett=s)

Since we are ultimately interested in calculating the quadrature squeezing of the intracavity
field e4(z,t), we concentrate here onwards on the quantum fluctuations alone of the various
quadratures. We first consider what the implications of the boundary connection relations (6)
are for the fluctuations. Since (7,t) and (#,#) are all real, these relations are formally the same
as those obeyed by any particular quadrature of ey and el fields, including their X~ and Y -
quadratures separately. Furthermore, the two fields (or their quadratures) on the right-hand side
(RHS) of each equation in (6) are uncorrelated at any t. To see this, we note, for example, that
the e%°¢(0,¢) field entering the z = 0 mirror contributes to the e**¢(¢,t') field only after a time
t' =t = 2¢/c during which the former ficld makes a full round trip through the cavity. Thus,
e-(0,t) is correlated with e%*¢(0, ¢t — 2{/c) which is not correlated with e3**(0,¢), since the vacuum
field fluctuations are essentially é-correlated in time. In view of this lack of correlation, we may
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Fig. 2. The Parametric Amplification Process. The X —quadrature is amplified by
a given factor (taken to be 2 here) while the Y —quadrature is attenuated by the same
factor.

write for the quantum-mechanicﬂ variance of, say, the Y —quadrature of fields at the mirrors in
terms of the power reflection and transmission coefficients (R,T) and (R',T") (with R = 72, etc.)

(AY, (0,87 = R(AY-(0,8)?) + T (AY(0,1)?);
(AY.(4,t)?) = R (AYi (4,07 + T (AYX(¢,1)?),

while setting z = £ in Eqs. (9) and z = 0 in Egs. (11) yields for the propagation of variances
through the medium

(12)

(AY,(4,1)?) = (AV,(0,t — /c)?) e (AY.(0,1)") = (AY.(t,t=tfcf) e (13)

With the aid of Eqs. (12) and (13), we may express the retarded propagation of the Y, —variance
at z = 0 in one complete round trip as

(AY,(0,8)2) = R(AY.(6,t — £/c)?) e~ + T (AY*(0,1)?)
= e MR [R(AY,(6,t — t]c)) + T'(BY2(L,t - t/c)*)]
+T (AY*(0,1)?) (14)
= RRe“(AY,(0,t - 2/c)?) + T {AY*(0,1)?)
+RT' e~ %t (AY¥*(L,t — £]c)?).
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Fig. 3. Round Trip Evolution of Fields and Their Variances.

The foregoing sequence of mathematical steps in arriving at the round trip propagation of variances
is shown diagrammatically in Fig. 3 to bring out the underlying physical picture.

In steady state, the quantum statistical propertles of the field do not change from one round
trip to the next. In this long-time limit, supprasmg the time entry of each variance in Eq. (14),
we get

[r (AY,:-?(O)?) + RT'e"%¢ (AY™(0)?)]
| (1= RR'e%) o

a result that is uniformly valid for all values of (R, T) and (R, T") pairs (with the obvious energy-
conservation constraints, R+ T = R'+ T’ = 1). It is also worth noting that in the derivation
of (15), the only property of the input fields used was their white-noise (6-correlated) character.
Thus, (15) applies not just to vacuum-field inputs, but | to arbitrary white-noise input fields, -
In the good-cavity limit, R, R ~ 1,qf =~ 0, we recover the result of Collett and Gardiner

generalized to allow for arbitrary white-noise input fields at the two mirrors:

(av,(0y?) = (15)

HAY:“(()V) +T <Ay-ucc(l)2>
(T+T)+4q¢ '

For vacuum-field inputs as explicitly indicated in Eq. (15), since the two input fields are statisti-
cally identical (except for their direction of propagation), we may write more simply

(16)

(AY4(0)?) =

(T + RT'e %)

17
(1= RRe=w) " an

(8Y.(0)%) =
where
Nuee = (BY7*(0)?) = (AY>*(0)?).
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Note that the calculation of the variance {(AX,(0)?) of the X —quadrature of the intracavity is
entirely analogous and is given by Eq. (17) provided q is replaced by —¢ everywhere.

The degree of quadrature squeezing is the ratio (AY,(0)?) /Nue which is generally the factor
by which two input fields with the same quadrature variance, but not necessarily vacuum fields, get
squeezed on entering the cavity. Detailed discussions of this quantity in both textual and graphical
forms have been presented elsewhere, where its generalization to include arbitrary relative phase

between the two traveling components of the monochromatic pump has also been derived [5,6].
' Having discussed the intracavity field, we now present the noise characteristics of the output
field. Like the former field, the latter field is strongly correlated with the input fields as well.
However, unlike the former, the output field quadratures can be easily subjected to a spectral
analysis by choosing a sufficiently narrowband local oscillator field and integrating long enough in
a balanced homodyne setup as was done in the original experiments [8]. We shall see that it is in
this spectral sense that the output field exhibits a very high degree of squeezing.

The boundary connection of the output is similar to Eqs. (6). For example, the leftward-
traveling output field at the z = 0 mirror is a linear superposition of the transmitted part of e_ (0,t)
and the reflected part of e%*¢(0,¢). So any quadrature of the output field, say its Y_ —quadrature,
obeys the boundary connection formula

Your(0,2) = £Y_(0,¢) + FY*(0,1). (18)

However, unlike the intracavity field, we must know the full time dependence of Y,.(0,t), not just
of its variance, before it can be spectrally analyzed. Equivalently, as (18) shows, we must know
how Y_(0,t) evolves in time. But, that is easy to write down over a complete round trip since we
know via Eqs. (9) and (11) how the intracavity field e interacts with the active medium in a
single pass through it, while Eqs. (6) tell us how the input fields ez leak into the cavity at the
z =0 and z = £ mirrors. The round trip evolution of Y_(0,t) turns out to be

Y_(0,t) = Fre=3tY_(0,t — 28/c)— iFe- %Y ec(0,t - 2¢/c)
+ fetYrec(d,t — tfc),

which could also have been written down directly based on physical arguments presented below.

If Y_(0,t — 2¢/c) is the Y-quadrature of the cavity field just before it is incident on the z =0
mirror from the right then after that mirror reflection a fraction if it is reflected while a fraction
f of the input field Y*(0,¢ — 2¢/c) is transmitted. The two waves propagate rightward through
the medium with their Y —quadratures attenuated by factor e~%. They are then reflected at the
mirror at z = £ by factor —# while a fraction # of the second input Y**¢(0,¢ —¢/c) is added to the
circulating wave. The net field then propagates a distance ¢ leftward through the active medium,
with its Y-quadrature attenuated further by e~* as a result, to become the net field, given by the
left-hand side of Eq. (19), a time ¢/c later.

A Fourier analysis of Eq. (19) is straightforward. We shall focus only on the central (zero-
detuning) frequency component since it has the largest noise reduction. Denoting the Fourier
transform of a function f(t) by f(éw), we see that for 6w = 0, Eq. (19) yields

(19)

V_(0,0) [1 - ##e™2¢| = —iF'e=2¥1(0,0)
+He-9Y¥ee(L,0),
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while Eq. (18) yields
Yout(0,0) = £ V_(0,0) + 7¥¢(0,0).

By eliminating ¥_(0,0) between these two relations and using the energy-conservation relation
72 + t* = 1, one may easily show that

(F - #'e=2¢) ¥12(0,0) + H'e™*¥>(¢,0)

Youl0,0) = (1 = 7ie-nr) ’

(20)
whose variance s related to the spectral variance of (uncorrelated) input-field quadratures. If we
assume that the input fields have the same spectral quadrature variance at a given frequency, such
as is surely true for vacuum-field inputs then the spectral squeezing of the output field at zero
detuning is by the factor

(r" - 1"’e""")z + Bite-ut o1
(1 = Fite-%t)? @)

Just as for the cavity field, the ratio (A)'{,..,(o, 0)2> / <A)—(:“(0, 0)’) for the X-quadrature is given
by replacing ¢ by —¢ everywhere in relation (21).

It is worth noting that just below threshold ##'e¥‘ — 1, the X-quadrature of the output
field at the z = 0 mirror has infinite variance in its central frequency component, while the
corresponding Y-quadrature spectral component has a finite variance that depends on how large
the transmission T’ of the other mirror is. In particular, for T/ = 0 regardless of the value of R
(or of T'), the output Y-quadrature has zero spectral variance at the line center. This is a very
surprising result, implying as it does that even in a very low -Q but single-ended cavity the output
field is perfectly squeezed in the spectral sense, if the parametric gain is high enough to drive the
oscillator to its oscillation threshold. A more complete discussion of the output field, including

the bandwidth of the squeezing spectrum, may be found in Ref. [6].

550(0) = (A¥,0(0,0)?) / (A¥*(0,0)*) =

5 Squeezing in the Presence of Pump Noise

In a real experiment, pump rrxéiv;é'fis:ihevit}bie. Ty;;u?a.ﬁy, the pumphel& has both amplitude and
phase noise that can be described well in classical terms alone. For example, the pump amplitude
may have a small fluctuating piece, described in Eq. (5) via a time dependent ¢,

o) =p+8(t), | (22)
in which 8q(t) is an Ornstein-Uhlenbeck Gaussian process with zero mean and an exponentially
decaying two-time correlation ' S

 (bq(t) éq(t)) = aple=T-T1, (23)

The pump phase noise, on the other hand, is ultin;ételyﬂlirmi'ted' by phase c}jjfpsion which is \-vell
described by a classical Wiener-Levy Gaussian random process with zero mean value for the time
derivative of the diffusing phase, §y(t), and its two-time correlations:
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(69) =0; ((t) 8u(t")) = 2D6(t - ¥'). (24)

The constants 2I" and 2D are the amplitude and phase-noise contributions to the total pump
linewidth.

Since detailed discussions of this problem have been presented elsewhere [6], we shall restrict
our derivations here to its relatively simple but physically revealing aspects. To begin with, we

shall take the white-noise limit, I' — oo, for the amplitude noise. In more precise terms, this is
the limit in which I'¢/c > 1.

Since ¢ in Eqs. (5) and (8) is time dependent, the exponentials in Egs. (9) and (11) have
integrals in their exponents. For example, in Eq. (9b) one must replace

e~ c-nx—]: Sq(t—s'/c)ds’

for a given statistical realization of 6. This means that the Y —quadrature variance is down by
the factor

e~ a0t <e"2 f.' 5c(¢—xlc)d=> = ¢~ 2l+4aote

in every single pass either leftward or rightward between the two mirrors. We used the familiar
result that for a Gaussian random variable z,

(") = el ed{as?) (25)
and the fact that when I't/c > 1,

(6q(t) 6q(t')) = 2a0b(t — t'), | (26)

to obtain the preceding factor.

A recognition of the extra factor e**°“ by which the Y —quadrature variance is altered when
the pump amplitude has a fluctuating picce immediately tells us that Eqs. (15) and (17) must
also be altered accordingly. Thus, for example, Eq. (17) takes the form

(T + RT'c-Zqu-daolc)
(1 — RR'C'“OH"GolC)

(AY+(0)2> = Nuoc‘

Since ag > 0, the net effect of the §-correlated pump amplitude fluctuations is to merely reduce
the parametric attenuation of Y-quadrature fluctuations thereby leading to a smaller intracavity
squeezing.

Although we have not discussed the opposite, static pump amplitude noise limit, Ttfe < 1,
it can be seen by physical arguments that for a given amplitude noise (Gq’)k, the static case
compromises intracavity squeezing more dramatically than the white-noise case, for it is roughly
the zero-frequency Fourier component of the pump noise spectrum that controls the steady state
characteristics of the signal field. As the noise bandwidth I' increases, a fixed amount of amplitude

noise is partitioned into more and more Fourier components, so that the zero-frequency component
(like any other) goes down.
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We turn now to the computation of spectral squeezing of the output field in the presence of a
§-correlated pump amplitude noise. This task is quite involved when compared with the derivation
of the preceding intracavity variance formula. One must begin with the fluctuating analog of (19)
which may be shown to be

Y. (0,2) = File="O=nl=4Y_ (0.t — 2fc)— {Fe-O-Me-tAYvec(0,t — 2¢/c)

+ FenOye (e tfe), (27)

in which

o) = [ lav+ balt — 2/o)) ds. (28)

A direct Fourier transform of Eq. (27) is not possible. We must compute first the two-time
correlation functions (Y- (0,)Y-(0,)), (Y_(0,8)Y*(0,)), and (Y}**(0,£)Y*(0,t')) that enter
the output autocorrelation function {You(0,t)Yeus(0, ')} via Eq. (18). A Fourier transform of the
output correlation then furnishes the spectral variance. To compute the former two correlation
functions, we solve Eq. (27) for Y_(0,t) iteratively in terms of Y* at successively earlier times,
one differing from the next by the roundtrip time 2¢/c:

Y.(0,t) = —iF & (FF)re Y (0, ¢ — 26(n + 1)/c)

e (29)
+ ¥ L () e~y (g, t — {(2n + 1)/c)
in which
m(t)= [ lao+ba(t = 2/0)]dz. (30)

We may use the identity (25) and the white-noise approximation (26) to obtain the useful formula

(emtlemmw) = ot """’egl(‘ﬁ)“(s"} >+2(6"""'l)] (31)
] = e~ (P9 hol gaoct(p+p'+2p<)
in which p< is the smaller 'o'fr(p, 7). | :
When combined with the §-correlated nature of the vacuum fields, relation (29) enables one

to secure the needed correlations from which the following output quadrature autocorrelation
function is obtained [6]: =~ - - S

(Yous(0,8) Your(0,8)) = F[f? ({2 + F2i7em20=2000))

il eI
- fo(ﬁ')" [6(t =t —2nL/c) + 6(t — t' + 2nt[c)] e-Inmt+aonct 4 § (¢ — t')]

in which

(Y (0,1) Y:"? (o £)) = (Y2 (¢,0) yoee (é, )y = Cé(t-1).
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As before, we are only interested here in the central frequency component of the quadrature
spectrum. This is obtained from Eq. (32) by integrating it over (t ~ t') in the range (—o0, ),
which is a trivial task due to the presence of a §-function in every term. The resulting infinite
sums are related to the geomteric series and can be carried out in closed form. The net result of
these straightforward steps is the following noise reduction factor at line center:

£ (P + Pite-deo=amek) (] 4 e Hm=oock) of
(] - 1"211’23"(0-200‘)‘) (l - 1"1"’5‘2(!0-000)‘) il -— f,'-le—ﬁ(p-aoc)l] ’ (33)

1
s¥o) = 5|1+

When the pump fluctuations are absent (a = 0), this expression naturally reduces to result (21).
In general, however, a graphical presentation of (33) is imperative for physical insights. This is
done in Fig. 4 for a symmetric cavity (R = R’). It is no surprise that as the pump amplitude
fluctuations increase in strength, the amount of squeezing reduces for any fixed value of R (i.e
along a vertical line on the figure). For a fixed fluctuation strength, on the other hand, the higher
its value the slower the squeezing increases, with increasing R, to its maximum value at oscillation
threshold.

A reduction of the amplitude-noise bandwidth, so that I'¢/c is no longer large compared to
1, leads to reduced output squeezing for the same reasons as for the intracavity field. It is
worth noting that amplitude noise, being essentially multiplicative in nature (see Eq. (5)), is
less important than pump phase noise which unavoidably couples the squeezed quadrature to the
highly fluctuating quadrature, thereby seriously undermining squeezing.

6 Pump Phase Fluctuations

Even the quietest pump, such as one generated by a highly stable laser, has intrinsic random
phase diffusion arising from the purely quantum mechanical process of spontaneous emission.
This means that squeezing in the sub-harmonic signal field when measured relative to a fixed (or
independently fluctuating) phase will show a time-dependent behavior as both the squeezed and
unsqueezed orthogonal quadratures with phases slaved to the pump mix. However, if both the
local oscillator (LO) and pump are derived from the same laser, then the reference LO phase and
the phase of the ideally squeezed quadrature track each other. In spite of this phase tracking,
there is a residual effect on squeezing, due to the time dependence of the pump phase diffusion
(9], which we consider here.

In the presence of a finite §¥)(t), as described by a Wiener-Levy Gaussian random process with
moments (24), Eq. (5) has q replaced by ge#¥(*), and the signal quadratures Xy (z,t) and Yi(z,t)
are defined relative to the phase §y(t)/2:

Xs(z,t)y= 1 [e+(:,¢)c--‘5w(z)/2 + e_(z,t)e"‘"’“)/’] :

: 34

Yi(z,t) = % [f:.,,(:,t)c""“’("/2 - e-(z,t)c'“’m/’] . (34)
These quadratures evolve according to the matrix equation
0 19 i

—_t = )= — 35

( ot az) Vi(z.0) [qa3 + 2c6¢(t)ag] Vi(z,1), (35)
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Fig. 4. Squeezing of the Central Frequency Component of the Output Field Quadra-
ture in a Symmetric Cavity. The full, dashed, and dotted curves represent values of
the fluctuation parameter aocf equal to 0, 0.005, and 0.01, respectively, while the
roundtrip gain coefficient ¢of is 0.05 in each case.
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in which the column vector Vi(z,t) is (X1 (2,t),Ya(z,t))7 and the o's are the Pauli matrices

a($1) e (03)me (1)

Although Eq. (35) is a first order equation, it is a matrix equation with the coefficient matrix
on the RHS at any time not committing with itself at another time. This renders the solution a
formal one in terms of time-ordered or path-ordered exponentials. The path-ordering (or time-
ordering) has however the advantage that successive path-ordered (or time ordered) exponentials
from one roundtrip to the next may be easily multiplied. One first combines the solution of Eq.
(35) with the boundary connections (9) to determine the single roundtrip evolution of V,(0,t)
to obtain a matrix analog of Eg. (19). Iterative processing of such equation leads to a formal
solution that can, via the simplicity of writing products of time (or path) ordered exponentials
with contiguous limits as single time (path) ordered exponentials over the entire time (or path)
interval, be expressed in the form

Ve(0,8) = fj (7#')" C(0, 2L, n; )X WY (¢ — 2nt/c). (37)

In Eq. (37), W™ is a column vector related to the quadratures of the two known input fields
and C(0,2¢n;t), a path-ordered matrix exponential involving an integral over 6¢(t), represents the
residual effect of pump phase diffusion over signal noise.

In Ref. [6], solution (37) serves as the starting point for computing the various variances and
correlations needed for determining the steady-state intracavity quadrature variances and output-
field quadrature noise spectrum. Eq. (37) is sufficiently complex that a statistical averaging over
the phase noise §3, in spite of its Gaussian and §-correlated nature, cannot be exactly performed in
the involved integrals. One must settle for a series expansion of intracavity and output squeezing
in powers of the phase diffusion constant D, which has been determined to O(D?) [6]. We refer
the interested reader to that reference for more details. It suffices here to state that pump phase
diffusion seems to be most important near threshold where the fluctuations in the X —quadrature
of the cavity field have a highly slowed relaxation rate.

7 Conclusions

We have presented here an analysis of squeezing in a degenerate parametric oscillator that lends
itself to an easy physical interpretation for the most part. For completeness, we have also summa-
rized the impact of pump amplitude and phase noises of sorts encountered in a real experiment
on the observed degrees of cavity and output squeezing. An exact analysis for the case of a finite
pump-phase diffusion noise éy(t) is beset by the difficulties of computing the statistical averages
of path-ordered integrals involving §y(t).
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